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• Solve radiative transfer equation in stellar atmospheres

• T integral operator defined on

– is the optical depth of a stellar atmosphere
– optical thickness of the atmosphere
– z is on the resolvent set of T
– is the source term

Description of the astrophysics problem
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• g is the kernel defined by
– is the albedo and
– is the first exponential-integral function and it belongs 

to the family

– g is weakly singular in the sense that
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• Approximate                                            by

– consider a grid 
– define

•

– where             is the adjoint basis of            in X *

Projection method: Kantorovich
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• The solution of the approximate problem

• leads to the solution of a linear system with n eq’s and n
unknowns 

– An is the restriction of Tn to Xn:

• we recover       from xn by

Matrix formulation
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Matrix coefficients: An
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RHS coefficients
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Typical coefficient matrix

1  , =− zzIA nn

band and sparse matrix

strong decay in 
magnitude from the 
diagonal
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Approximate solution

• How to solve                                  when the associated 

coefficient matrix                    has large dimension?      
• one can use:

– direct methods,
– preconditioned nonstationary iterative methods, or
– iterative refinement methods (Newton-type method):

nn zIA −
fzT nnn += ϕϕ
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Iterative refinement methods

• Jacobian can be approximated by

– scheme A (Atkinson’s algorithm):

– scheme B (Brakhage’s algorithm):                                           

– scheme C (Ahues algorithm):                                           
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Iterative refinement methods

• In practice T is not used. The problem is restricted the 
to                         , considering a finer projection 
discretization of T, Tm

• Tm restricted to Xm:

• Tm restricted to Xn:

• Tn restricted to Xm: 
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Atkinson’s scheme 

band block LU
or

sparse iterative methods
update

xn and xm

prolong. wn
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Solving the problem in the m-D space

• We can solve                                       for the finer grid  

approximated matricial problem                        

• Our goal is to experiment with robust and portable algorithm 

implementations (from the ACTS Collection)

• Direct methods: 

– SuperLU

• Preconditioned nonstationary iterative methods:

– PETSc

– Trilinos

fzT mmm += ϕϕ
mmm bzIA =−
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Problem specification

• grid         : nonuniform grid (4 zones)
• parameters: z = 1, 
• machines: located at LBNL/NERSC 

– SGI Altix 350: 32 64-bit 1.4 GHz Intel Itanium-2 processors, with 192
GBytes of shared memory
– AMD Opteron Cluster: 356 dual-processor nodes, 2.2 GHz/node, 
6 GB/node, interconnected with a high-speed InfiniBand network
– IBM SP: 380 compute nodes with 16 Power 3+ processors/node, 
16 GB memory/node.

• software:
– MPI, F77 & F95, PETSc, SuperLU

1210   : −≤εtol; 9.0  and  75.0 == ϖϖ

*τ
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Normalized times for the generation phase and system solution 
with SuperLU, for various matrix sizes (m), on the SGI Altix
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Normalized times and nb. it. for various matrix sizes (m) on 
up to 32 processors (p) on the Opteron cluster
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a constant memory use per node allows efficiency to be maintained
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Normalized times and nb. it. for various matrix sizes (m) on 
up to 32 processors (p) on the Opteron cluster
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Speedup up to 32 processors on the Opteron cluster
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Normalized times for Jacobi and block Jacobi
preconditioners on the Opteron cluster

50000=m

1,00E+00

2,00E+00

3,00E+00

4,00E+00

5,00E+00

6,00E+00

7,00E+00

8,00E+00

9,00E+00

1,00E+01

1,10E+01

0 4 8 12 16

gmres(jacobi) gmres(bjacobi) bcgs(jacobi) bcgs(bjacobi)



PARA'0618-21 June 2006 20

Conclusions

• We discussed the numerical solution of a radiative transfer 
equation for modelling the emission of photons in stellar 
atmospheres.

• The parallelization of the generation phase greatly reduces the 
time to solution and enables the solution of large systems.

• The selection of appropriate linear solvers is important for 
delivering performance and portability.

• Compared to iterative refinement techniques, the present 
approach
– leads to 40% savings in time in the generation phase (for 

m=50000 and np=5)
– reduces the number of communications required for mapping the 

coarse problem into the fine one (up to 5x for Atkinson and 4x 
for Brakhage and Ahues’ schemes for m=50000 and np=5)
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Motivation

• In this work we consider the numerical solution of a
radiative transfer equation for modeling the emission 
of photons in stellar atmospheres.

• Mathematically, the problem is formulated in terms of 
a weakly singular Fredholm integral equation defined 
on a Banach space.

• Computational approaches to solve the problem are 
discussed, using direct and iterative strategies that are 
implemented in open source packages.
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Atkinson’s parallel scheme
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